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STATISTICAL MODELS TO DESCRIBE THE STRUCTURE 
OF POROUS CERAMIC MEMBRANES 

J.H.F. Lim, X Jia, R Jafferali and G A Davies 
Department of Chemical Engineering 

UMIST 
Manchester, England, M60 1QD 

ABSTRACT 

A knowledge of the material structure of porous membranes is 
esscntial in the computation of flux-pressure differential and blinding 
behavior. The data provided by manufacturers on the intcrnal pore 
properties, mercury porosimetry and air permeability, is of limited m e  since 
it is based for interpretation on an assumed matrix of cylindrical pores. 
Ceramic membranes are considered in this work for which three different 
types are investigated. None of these show any resemblance to structures 
assumed for an interpretation of this data. 

The pore structure in all examples vary and it is concluded that 
dcferministic models to describe this are not valid. 

Statistical models based on random division of 2 and 3 dimensional 
space are proposed to describe the structure of cellular ceramic membranes 2 
space model), sintered ceramic membranes and foam membranes [3 
dimensional space models). The models are shown to be inter-related 
providing a direct comparison between the membrane structures. 

The structures proposed by the models are compared and agree wcll with 
experiment a1 data. 

INTRODUCTION 

In almost all applications of porous membranes it is important to 
have quantitative knowledge on the pore properties, particularly the free 
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822 LIM ET AL. 

volume, and pore dimensions. Manufacturers often quote data for air 
permeability, mercury porosimetry in terms of mercury ingress at various 
applied pressures, and bubble point data. In order to obtain information on 
the pore diameters from either mercury porosimetry measurements or air 
permeability, equations must be applied which invoke some model for the 
pore structure. Almost all such models assume that the pores are parallel 
cylindrical pores or are interconnected cylindrical pores. If we examine 
typical ceramic membranes these assumptions are quite erroneous. The pore 
structure bears no resemblance at all to either parallel or interconnected 
cylindrical pores. Knowledge of the bubble point at particular pressures is of 
little use in determining the pore structure. At best it can give some 
information on the diameters of pores at one face of the membrane, the face 
at which the bubble points were measured. Even this interpretation requires 
an assumption on the cross sectional shape of the pore at the outlet face. 
Most models assume that this cross section is circular. In this paper we will 
consider three different types of ceramic membranes which are used in micro 
and ultra filtration applications. These examples include cellular ceramic 
membranes. These are typically used in applications at the boundary 
between ultra and micro filtration. The cut-off pore diameter quoted by the 
manufactures is between 0 . 1 4  microns. A second type of ceramic membrane 
is a sintered ceramic membrane. These are used mainly in micro filtration 
applications. Finally, the third type considered is a cellular foam membrane 
which is principally used in micro filtration applications. These types have 
been chosen since the pore structure in each type of membrane is different. 
A stochastic model is presented to describe the pore structure in each case. 
It is shown that these models are all inter-related and can follow logically 
from one another. 

EXPERIMENTAl OBSERVATIONS ON THE STRUCTURE OF 
CERAMIC MEMBRANES 

We will consider the three types of membranes, viz 

i )  Cellular ceramic membranes, 
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STATISTICAL MODELS OF POROUS CERAMIC MEMBRANES 823 

ii) Sintered ceramic membranes, 
iii) Cellular foam membranes. 

separately. In each case samples of the various membranes were taken and 
thin sections made by first impregnating the pore structure with a wax. This 
was used to support the membrane during sectioning. The membrane was 
then sectioned carefully using a microtome. Each section was then placed on 
a slide, this was heated and the wax removed from the section. The section 
was then prepared for scanning electron microscopy and photomicrographs 
were then obtained. The magnifications used varied to suit the particular 
membrane section being studied. 

Cellular Ceramic Membranes 

A scanning electron micrograph of a typical cellular membrane is 
shown in Figure 1. The dark areas in the photograph are the pores of the 
membrane. The actual membrane shown here is an Anotec cellular 
membrane which has a nominal pore rating of 0.2 pm. This membrane is 
produced by electrolytic oxidation of aluminum. The cellular structure of 
the anodic film is the result of local current density at the metal interface. 
This is not uniform either in spacial distribution or intensity so that an 
irregular cell pattern is formed. The important feature of this membrane] 
the type shown here, is that the individual pores whilst irregular in  cross 
section are non-connected, that is they pass through the membrane in the 
direction perpendicular to the plane shown (z direction) 
without connecting to any neighbours. Two types are possible, one in which 
the pore cross section area is constant in the direction through the 
membrane, the second type is where the cross section is smaller at one face 
than the other. The first type is a symmetric membrane and the second type 
is an asymmetric membrane which is produced by regulating the current 
density during the growth of the film. If one studies the SEM photograph 
shown in Figure 1, it can be seen that the individual pores have the shape of 
an irregular polygon. These fully tessellate the plane shown in the 
photograph. Because of the non-connectivity of the pores, the structure can 
be described in 2 dimensional space. This is true for symmetric membranes 
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824 LIM ET AL. 

FIGURE 1 SEM of an Anotec Cellular Ceramic Membrane. A View of an 
Inlet face of the Membrane Perpendicular to the Direction of Flow 

and with a slight modification to the description can be applied t r  
asymmetric membranes of this type. If we are to describe the structure of 
cellular ceramic membranes, then it is important that the details 
demonstrated in the photomicrograph are retained in the model. That is 
that the sections are irregular external polygons and that they fully tessellate 
a plane in 2 space. In early models to describe this structure and models, 
which have been used by the manufacturers, the pores are assumed to be 
regular hexagons fully tessellating a plane (1,2). This is clearly not true 
when one examines the photomicrograph. 

Sintered Ceramic Membranes 

A typical photomicrograph of a sintered ceramic membrane is shown 
in Figure 2. This is much different from the cellular ceramic membrane in 
that now the material is made up of an assembly of spheres which are packed 
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STATISTICAL MODELS OF POROUS CERAMIC MEMBRANES 825 

FIGURE 2 SEM of a Sintered Ceramic Membrane 

together in a matrix assembly. There are several points of contact between a 
particular sphere and it 's neighbours to produce a stable structure. The 
sintering process tends to weld adjacent spheres together. The pore space is 
formed by the voids be twen the spheres of the matrix. Unlike the cellular 
membrane, the structure must now be described in 3 space. One similarity 
between the cellular membrane and the sintered membrane is that symmetric 
structures can be produced as well as asymmetric structures. In the 
symmetric structure the particle size distribution of the ceramic beads 
making up the membrane is constant throughout the material. This leads to 
a similar pore space through the material. The word 'similar' is used since of 
course there will be variations within the pore space caused by the 
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826 LIM ET AL. 

FIGURE 3 Photomicrograph of a Section of a Ceramic Foam Membrane 

distribution of particles of the base material. In terms of a statistical 
distribution the material is, however, homogeneous. In asymmetric sintered 
membranes a different particle size from the base beads are used at one face 
of the membrane. Thus the pore space will vary across the membrane in the 
z direction. The membrane is now heterogeneous. In both cellular ceramic 
and sintered membranes, the object of using asymmetry is to reduce the 
cut-off size of the membrane or reduce the average pore cross section area at 
one face. Conventionally this face is used as the inlet of the membrane. 

Ceramic Foam Membranes Used For Micro Filtration 

A typical SEM of a cellular foam membrane is shown in Figure 3. 
This media is used in micro filtration particularly for the filtration of fluids 
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STATISTICAL MODELS OF POROUS CERAMIC MEMBRANES 827 

at high temperatures, an example would be the filtration of molten metals, 
such as aluminium and stainless steel, to remove slag. These membranes are 
made using a polymeric foam precursor. Usually reticulated polyurethane 
foam is used. One method of making these membranes is to compress the 
polyurethane foam and then immerse it under a ceramic slurry. The 
compression of the foam is then released which causes slurry to penetrate 
into the foam structure. The material is then withdrawn from the slurry 
bath and excess slurry allowed to drain. The polyurethane foam is thus 
coated with a film of ceramic slurry and it is then placed in a furnace where 
the ceramic material is sintered. During this process polyurethane foam 
material is burned off to leave a matrix of ceramic which mimics the 
structure of the original polyurethane foam. In this way a ceramic foam is 
produced. Immediately if one examines the photographs one can see that the 
material is quite different to either of the other two. One similarity with the 
sintered ceramic material is that now the structure is again a three 
dimensional structure and must be described in terms as a model of 3 space. 
Detailed examinations of ceramic foams usually reveal that the cross section 
of the individual cells formed by the inter-connecting ceramic films are 
different in one plane to another. In this way they may be described as 
asymmetric. This asymmetry is a result of the method of manufacture of the 
original base foam material. Reticulated polyurethane foams are usually 
made by expansion of a gas bubbling through a liquid polymer solution. This 
forms a gas liquid foam and as the gas bubbles rise the reduction in 
hydrostatic pressure results in the individual foam cells being bigger in the 
vertical plane than in the horizontal. This results in a basic asymmetry 
which is then transferred to the ceramic membrane during manufacture. 

The examination of these three types of membrane reveal some 
important conclusions. First the individual pores cannot be described by any 
model based on cylindrical structures. The second conclusion is that the 
pores are irregular in all cases and cannot therefore be described adequately 
by any single linear dimension such as a mean pore diameter. Third, the 
irregular shapes are characteristic of each of the three different structures. 
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828 LIM ET AL. 

Therefore any models to describe these structures must reflect the basic 
irregularity of the pore space and must include the basic properties of each 
structure. In the case of the Anotec cellular ceramic membrane, the basic 
structure to be reflected in the model must be that the cross section of the 
pores have the shape of irregular external polygons. These polygons 
tessellate the total area. Models to represent both the sintered membrane 
and foam membrane must be described in 3 space. Clearly two different 
models must be used for these two membranes. In the case of the sintered 
membrane, the model must relate to random packing of spheres (or near 
spherical particles) and in the case of the foam membrane, the model must 
describe the structure of a basic foam. The foam cells form external irregular 
polyhedra and these again fully tessellate 3 space. 

STOCHASTIC MODELS TO DESCRIBE THE STRUCTURE OF THESE 
MEMBRANE MATERIALS 

Cellular Ceramic Membranes 

In order to arrive at a suitable statistical model to describe the 
structure of any porous material one must first consider the physics 
underlying the method of manufacture of the materials, this can give 
guidelines to a basic physical model to describe the structure. If we consider 
the cellular ceramic membrane this, as described earlier, is produced by the 
electrwxidation of aluminium. The basic oxide film which is formed on the 
surface of the metal is nucleated at various points on the surface of the 
aluminium. The nuclei represent points of high current density and from 
these the basic pores are formed. As the oxide film first forms on the surface 
the site described is circular. The nuclei sites on the surface are randomly 
distributed over the surface and usually result at points where there is 
microscopic protrusions on the surface. If it is assumed that the nuclei 
centres of the pores are randomly dispersed across the surface and if they are 
independent of one another then these centres can be described by a 
homogeneous Poisson point process over the surface in 2 space. This basic 
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STATISTICAL MODELS OF POROUS CERAMIC MEMBRANES 829 

Cell Boundaries 

FIGURE 4 Pore Growth Along Lines of Contact On A Simulation Of A 
Cellular Ceramic Membrane 

assumption will be used to develop a pore model to describe the structure. 
As the pores grow from the nuclei centres, as a result of oxidation, when 
neighbouring pores expand and ultimately touch, it will be assumed that 
they then continue to grow along the line of contact. If the oxidation process 
is continued so that the pores continue to expand, ultimately all the pores 
will be in contact with their nearest neighbours. The growth process then 
would cease when the whole surface is oxidised and the resulting cells would 
form irregular external polygons. The basic statistical process of tessellating 
2 space in this way is known as a Voronoi tessellation (3). An example of the 
growth process showing the boundary between adjacent cells is shown in 
Figure 4. When an oxide film is formed, the cell boundaries will take the 
shape shown in this Figure by the lines of contact between adjacent cells. It 
can be seen from this that the network produces a set of external polygons. 

In order to translate this basic physical model into a mathematical 
algorithm, to simulate the structure of the material, the following sequence is 
adopted. 

First the simulation area A is defined. This is described in  terms of 
dimensions x and y and for convenience positions on this surface are 
described in terms of dimensionless coordinates XI, yi where x1 is given by 
"/X. By using dimensionless coordinates to define any position in the 
surface in 2 space the dimensionless parameters x1 and y1 will take on values: 
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(1 )  

X and Y are the linear dimensions of the area of membrane simulated. 

In order to define the number of cells or pores which will be produced 
on the surface, either the free area, E,, or porosity, E,, of the membrane 
must be specified. Alternately the pore density, that is the number of pores 
per unit, must be specified. If the free area or porosity is used then a 
calculation is made in order to calculate the pore density. In this discussion 
we will assume that the pore density X is defined. The simulation procedure 
then follows directly from these definitions. First a set of X x A points are 
defined in the simulation area to conform to a Poisson point process. To do 
this, if we consider first pore one the position of the centre of this pore x11,yll 
are defined in terms of a uniformly distributed random variable r, 0 5 r 5 1. 
r is defined using a random number generator so that this is first used to 
define x1 and then a second random number is generated corresponding to y1, 
the random number lying in the range of 0 < r 5 1. These co-ordinates which 
define the centre of pore one are then stored and the process is repeated for 
pore two. The coordinates x12, yl2 are then stored. This procedure is then 
repeated from i = 1 to i = X x A and in each case the two co-ordinates are 
stored along with the pore number. This set of 2 x X A points then 
represents the nuclei centres of X A polygons of a Voronoi tessellation. In 
order to complete the simulation to produce these polygons one of two 
procedures may be used. In the first procedure the circles produced from 
each nuclei centre are allowed to grow at a uniform rate until they touch one 
or more of neighbouring circles propagated from neighbouring nuclei sites. 
When two circles touch they are allowed to continue to grow by deformation 
along the line equi-distant to the nuclei of the touching disks. The growth 
process is continued until the whole surface has been tessellated to produce a 
network of polygons. The detailed algorithm to generate this set of polygons 
although based on a rather simple idea is involved. An alternative procedure 
is to produce the associated Delauney triangulation of the lattice (4,5). The 
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FIGURE 5 Voronoi Tessellation Of 2 Space 

Delauney triangulation is related to the Voronoi network and is defined as 
the network produced by the connection of perpendicular bisectors of sides of 
the Voronoi polygons. These perpendicular bisectors when connected 
produce a set of triangles which fully tessellate the space. An example of a 
Voronoi tessellation is shown in Figure 5. The Delauney triangulation can be 
produced from the basic Voronoi nuclei points and then from these the 
Voronoi polygons can be traced. 

The result of this model is the definition of a network of external 
irregular polygons. Mathematically this can be defined in terms of a graph. 
An important feature of the graph is the coordination number at a node, c ,  
that is the junction of walls of neighbouring pores, is a constant, c = 3. 
Apart from the boundary edges of A the graph will fully tessellate the space. 
A resulting computer simulation from this model is shown in Figure 5. The 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
2
9
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



832 LIM ET AL. 
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FIGURE 6 Pore Order Distribution Produced By Voronoi Lattices 

pores are all external irregular polygons with c = 3. The average number of 
sides of polygons n = 5.9629 with a standard deviation 6, = 1.3852. If, 
however, one compares the network with Figure 1, there are some differences. 
In the simulation there are a number of triangular pores. These are not 
evident in the SEM of real membranes. The distribution shown in Figure 6 
shows that in the Voronoi lattice produced there are some 2% of the polygons 
with an order, number of sides, of 3. The expected pore area E(a,) is: 

The mean pore order E(n) is given by: 

2c E(n) = - 
c-2 

(3) 
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Standard Deviation of the Polygon Shape 
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FIGURE 7 Pore Shape Distribution In A Constrained Voronoi Tessellation 
of 2 Space 

Since the Voronoi tessellation c = 3, E(n) = 6. This compares with 
the value reported above of 5.9629. 

The differences in the model structure shown in Figures 5 and 1 can 
be addressed by introducing constraints to the positioning of the nuclei 
defining the lattice points, xli and yli. If we introduce a minimum 
separation distance allowable between neighbouring lattice points, ,8, such 
that for nucleus i: 

for j = 1 ... i -1, i + 1 ... N. 

This will modify the lattice. The effect of this on the pore order 
distribution, plotted here in terms of the second moment, is shown in Figure 
7. The second moment, 6,, decreases as 
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834 LIM ET AL. 

FIGURE 8 A Contrained Voronoi Tessellation Of 2 Space To Simulate A 
Cellular Ceramic Membrane 

,O increases. A value of ,O is reached where the fraction of order 3 pores 
(triangular pores), F(n=3) becomes zero. This value for ,O was used in 
defining the constraint limit. The network produced at this limit on ,O, ,O = 

,OcOcrit, was analysed, in terms of the pore order distribution the first and 
second moment were calculated. The first moment remains unchanged at 
E(K) = 5.9629, the second moment decreases to 6" = 0.8042. The graph 
produced of the lattice is shown in Figure 8. SEM photomicrographs of the 
type shown in Figure 1 were analysed on a digitising image analyser. 

The experimental data for pore order are shown in Figure 9. It can be 
seen from this that there is close agreement between the constrained Voronoi 
lattice and the experimental results. 
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FIGURE 9 A Comparison Between The Pore Order Distribution Produced 
By The Model With Experimental Measurements 

In both Figures 5 and 8 the wall of the pores are simply shown as thin 
lines. This is, of course, not the c a e  in practice when 6, the wall thickness, 
is finite and in relation to the diameter of the inscribed circle of a polygon 
(pore) significant. The area in a unit section of membrane occupied by the 
pore walls, A,, is: 

A - A  
A =  Pore = 1 - A ,  

A W (5) 

where A pore is the total cross section of the pores within the area A. In a 
unit area of A: 

where bpi  is the cross section area of pore i, A, is the free area of the 
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FIGURE 10 
Predicted By The Model, a, with experiment, b 

A Comparison Of The Structure Of A CCM Membrane 

membrane. To present a direct comparison between the simulation and real 
membranes, measurements were made with the image analyser to determine 
A, from Figure 1. For a 0.2 pm nominal pore rating Anotec membrane A, - 
0.591. This was used to determine 5 and the value inserted into the 
simulation. Thus the simulation model has used two pieces of data taken 
from measurements of an actual membrane; X and 6. Using these values the 
structure simulated by this 2 dimensional stochastic model for a C.C.M. 
membrane is shown in Figure 10. There are some minor differences. At the 
node points the model produces as a clearly defined angle whereas in 
practice, because of surface tension forces acting within the electrolyte in the 
pore during formation, a curved boundary is produced. This can easily be 
included in the model. Additionally the manufacturing process sometimes 
results in very brittle walls between adjacent pores. These sometimes 
rupture during separation and handling to produce a conjugate concave 
polygon (pore). Some examples are seen in Figure lob. Comparisons of 10a 
and 10b produce identical values for c, c=3 and very close values for E(G): 
E(n)srM - - 5.9629, E(n),,, - 5.957. The - 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
2
9
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



STATISTICAL MODELS OF POROUS CERAMIC MEMBRANES 837 

frequency distributions for other pore properties; pore area F(ap), pore 
perimeter F(p) and pore hydraulic diameters F(d ) are shown in Figures 

lla-c. 
HP 

The comparisons of results predicted by the model with measurements 
from an actual membrane structure are favourable. The sequel to this is can 
the model be used to predict any performance data of a membrane in use and 
how do the predictions then compare with experimental data? Two simple 
cases have been considered. The first is the prediction of clean solvent flux 
with the applied trans-membrane pressure differential, V vs AP. This, 
although very important in practice, is perhaps not such a sensitive test of 
the model since if the free area A, is matched, AP is a function of the pore 

perimeter, p, but will not change dramatically with p. 

For laminar flow through the membrane the volume flux is given by 
the equation: 

x 
C a i d 2  

H i  AP i =1 
V =  ( 7 )  

where e is the thickness of the membrane. This equation is applicable only to 
symmetric membranes in which the pore cross section is constant with e. 

Since F(dH) is known and ai d then equation 7 can be solved. The 

simulation term, ST, is available from the model, A, and 1 is also known so 

that: 

H i  

if 2 is computed = K, the volume flux can be calculated and if this is 
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Pore area (micron*) 

C 

Pore diameter (micron) 

FIGURE 11 Pore Statistics Produced By The Model. a pore area, b pore 
perimeter, c pore hydraulic diameter 
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Permeate Flux (mm*3/rnmA2.s) 
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FIGURE 12 Comparison Of The Water Flux Through The Membrane With 
Transmembrane Pressure Drop 

plotted against AP a straight line should be obtained passing through (0, 0) 
with a slope of (1). K 

32PJ 

Data is shown in Figure 12 for water flux and a 0.2 pm Anotec 
membrane. 

A more sensitive test would be to predict the flux decay with time at 
a constant trans-membrane pressure as the membrane blinds. The 
mechanism of blinding in complex and depends on the nature of the material 
present in the permeate fluid. We will consider an ideal case used by 
manufacturers when determining and quoting so called 'cut-off' pore size. 
Here the membrane is challenged with a slurry of carefully sized latex 
particles dispersed in a solvent. Experiments were carried out in the present 
work with dilute suspension of latex beads in water. The latex size fraction 
was chosen so that particles would be close to the pore dimensions. Then if 
dpart < dci, where dci is the largest inscribed circle of a pore, i, the particle 
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will pass through the pore with the permeate to be entrained. The criteria 
for defining particle-pore interactions used in the simulation were taken from 
the work of Rose and English (6). Thus, if dpart > dei then the particle 
would remain either on the inlet surface and then form a layer (case i), or if 
l.lxdcj > dpart > dci then the particle would enter the mouth and become 
wedged, case ii. In each case the effect will be similar, the subsequent flow 
through pore i would either cease (i) or be greatly reduced (ii). 
Measurements were made of permeate flux while filtering in dead-end mode 
a 5% latex suspension of 0.225 pm beads in water. A 0.2 pm Anotec 
membrane was used at AP = 0.34B. In order to compare the flux decline 
using the stochastic model for the structure of the membrane, the clear water 
flux was first computed using equation 7. The interaction of particles in the 
slurry with the membrane pores was then computed using a stochastic 
trajectory model. First a distribution function is defined to describe the 
particle size in the slurry. A normal distribution was used with a mean of 
0.225 pm and standard deviation of 0.031 pm. The slurry was assumed to be 
homogeneous so that there is equal probability for particles in the slurry to 
approach the filter at any point over the inlet area. Plug flow towards the 
filter surface was assumed. To compute the particle-pore interaction a 
particle is selected at random from the distribution, say particle 1. The 
diameter is determined using the central limit theorem: 

where r is a uniformly distributed random variable 0 5 r 5 1 and XI is an 
integer R 2 12. 

The trajectory approach of this particle towards the membrane is next 
defined by selecting its position in 2 space xlpi, ylP1. These values are again 
determined in terms of r, 0 5 r < 1, x$,i, ylpl define the position on the 
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membrane surface where the particle arrives. The membrane model is then 
interrogated to determine the dimensions of the pore nearest to xlPl, ylpl, say 
pore i ,  diameter dci. Initially all pores are open and thus the interaction of 
the particle with the pore is determined by comparing dpl with dci. If 
dpl < dci the particle is allowed to pass through the pore with the permeate 
and no increase in the hydraulic resistance of the membrane takes place. If 
dpl > l.ldci then the particle is retained on the surface of the membrane and 
blocks the pore to further flow. The total free area of the membrane is then 
reduced and therefore in equation 7 the term is reduced giving a reduction in 
the flux. The intermediate condition dci < dp < l.ldci which leads to 
particles being trapped in the mouth of a pore, i ,  is also considered. This 
again reduces the flux by, in this case partially sealing the pore. The 
reduction in area of the pore is computed and the term (ST) in equation 7 
(ST) is adjusted. The process is repeated choosing another particle dpz and 
coordinates xlp2, ylpz. The interaction is computed with the pore at or 
nearest xlp2, ylP2 as before and the outcome v.v the flux determined. The 
procedure is repeated for n particles n - 105. As the membrane starts to foul 
pores at any position xlpn, Ylpn  will be blocked. When this condition is met 
particle arriving at this point are processed by considering the conditions of 
neighbouring pores to this site. If any or all of these are vacant - open - 
then the particle is allowed to migrate to the pore of largest cross section 
area offering the path of least resistance to flow. The pore-particle 
interaction is then computed. If all neighbouring sites are blocked then 
particles are assumed to form a surface layer on the membrane. In the 
present work the resistance of this surface layer is ignored with respect to the 
resistance across the membrane. This is a simplification which would only be 
valid if the surface deposit is small. 

Results for the computations are shown in Figure 13. For conditions 
when the particle size distribution is quantitatively similar to the pore size 
distribution the computed data is close to experimental results. The model 
provides data on the quantity and size distribution of particles entrained 
through the membrane in the permeate as well as data on the surface deposit 
and particles blinding the pores. The latter would not be removed by any 
back flushing procedures. 
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az- 

0. I - 
0.0- 

FIGURE 13 Comparison For The Flux Decay With Time At A Constant 
Transmembrane Pressure Differential, Model Predictions With Experimental 
Results 

c 

Sintered Ceramic Membranes 

A major difference between sintered ceramic membranes, ceramic 
foam membranes and the cellular membranes described in section 3.1 is that 
these structures can only be described by 3 dimensional models. There is no 
symmetry or structural similarity in the third plane as in the cellular 
configuration. SEM photographs show the structure of sintered membranes 
to be formed from an array of near spherical particles which are fused 
together at the points of contact. The particles are polydispersed. The basic 
problem to model is a configuration of nested polydispersed spheres. 
Although the structure of the cellular membrane described by a pseudo 2 
dimensional structure appears at first to have little or no similarity to this 
problem, there is in fact a considerable common base for both. 
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If we assume that the relative positions of particles in the basic 
structure are statistically independent, then one approach is to asume that 
the centres of the spheres making up the structure are distributed in 3 space 
by a Poisson point process. As in the previous example the particles can be 
constructed from these points by a uniform growth process until each particle 
touches a neighbouring particle, the essence of a Voronoi tessellation in 3 
space. The number density of the points distributed in 3 space will then 
define the average particle diameter. In this simple description the particle 
size distribution and free volume of the resulting structure will be determined 
by the site number density and spacial distribution. 

To develop a model based on these assumptions, the number density 
per unit volume, A,, is first defined. The sample space, X, Y, Z, is then 
made non-dimensional by defining the parameters x1 = "/X, y1 = y/Y, z1 = 

/Z. Starting with the position of the first particle the position of the centre 
are defined in 3 space by determining x11, yll, 211 from a uniformly 
distributed random variable r, 0 5 r 5 1 as before. The sequence is then 
repeated for each particle 1 through N = A, in each case the coordinates of 
the centres of each particle i, Xlj, Yli, Zli, are stored. To complete the 
construction the particles are allowed to grow radially at a constant rate 
from the nuclei sites (centres) until each particle contacts a neighbouring 
particle. At this point the growth at the two contacting particles are 
stopped and the corresponding diameters determined and stored. On 
completion of this process all particle diameters and positions are known. 
The free volume of this structure, tv, can then be computed from 

2 

N 
V - E Tdia 

j 6 
V 

C" = 

where V is the sample volume V = X Y Z. When the position of the initial 
nuclei sites, xli, yli, Zlj, are uncontrained within the sample space the free 
volume obtained is high 6,-0.8 and generally much higher than that obtained 
in commercial samples of sintered ceramic membranes. The results also 
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demonstrate a wide variation in particle diameters and resulting high 
standard deviation. To modify the structure and to bring it closer to that of 
actual membrane materials, a constraint or limit process is applied to the 
initial Poisson point distribution in 3 space. (The procedure is very similar 
to that applied earlier in the tessellations of 2 space.) The basic 
requirements are the same - to reduce the variance, in this case the volume, 
of the unit cells constructed from the Poisson points.) The technique is to 
generate the N points but as these are defined the distances of all 
surrounding points are computed and compared to a minimum set value - 
constraint distance 6. For point i all surrounding nearest neighbour points 
say k, 1, m, n are determined and the distances l-k, i-1, etc computed: 

6 i k  is then computed to 6. If 6 i k  > S then the distance 6il is computed and so 
on. If all values exceed the value of 6 then condition for point i is accepted. 
If any one or more distances 6 i k  < 6 then the point i is invalid and replaced. 
As 6 is adjusted the free volume of the final structure tv is modified. A 
summary of results produced based on a simulation of a membrane sample 
made up of 8000 spheres are shown in Figure 14. As the constraint distance 
6 is increased cv decreases and 3 increases. The simulated structure of the 
membrane produced by the model are shown in Figures 15a and b. Figure 
15a shows a close up of the structure seen normally to a face of the 
membrane. In Figure 15b a sample volume is rotated to show the 3 
dimensional packing structure. 

The constraint Poisson point process model introduces a minimum 
pair separation to the normal unconstrained process to control the mean size 
and size distribution of the individual spheres making up the structure, 
obviously the greater the value of S the larger the mean size and the smaller 
the range of the distribution. However, as the points are introduced 
randomly, as 6 is increased the computer time spent in generating a given 
number of points within a simulation volume increases. There is an upper 
limit for packing of hard spheres using this minimum pore separation 
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FIGURE 14 Variation Of Free Volume With Interparticle Spacing 

concept. Alternative procedures can be adopted all based on the same 
concept of utilising a Poisson point process in  3 space to define the positions 
of hard spheres but applying different rearrangement algorithms to control 
ti,. Two other methods have been employed in the present work; (i) an 
expansion model and (ii) a vibration model. In the expansion model the 
algorithm expands and/or moves adjacent spheres according to  a set of 
deterministic values rather than randomly. The idea is to  achieve a more 
stable highly packed structure. According to the expansion model if a sphere 
is in contact with another sphere it will expand itself along the line of centres 
until it contacts a second sphere. If it is already in contact with two spheres 
it will grow until it touches a third sphere whilst maintaining contact with 
the other two. Further growth is possible from this position, if it is in 
contact with three spheres but its centre is not on the plane defined by the 
centres of the three contact spheres it can expand again until it contacts a 
fourth sphere. It cam expand again if it has four contact spheres but the 
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FIGURE 15 A Section Of A Sintered Ceramic Membrane Predicted By The 
Model 
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centre is outside the tetrahedron formed by the centres of the four spheres 
growth can continue until it contacts a fifth sphere, etc. This series of 
modifications can be implemented in a fast efficient algorithm to obtain high 
packing densities and low free volumes cv. The modification rules necessarily 
affect the size distribution of the resulting spheres. 

In the vibration algorithm the procedure is effectively reversed. First 
the size of the spheres is predefined according to some distribution function, 
such as for example equation 9, and the position of the individual spheres are 
generated randomly. This procedure will inevitably contain a large number 
of overlaps. The vibration algorithm, effectively eliminates the overlaps 
according to a set sequence. To minimise the chance of introducing new 
overlaps as ones are removed the procedure starts with the most serious 
overlap. The order of overlap is chosen using the term Ai. 

l , j = l , 2 , 3  ,... N 

where I . .  1) - - 0 

I i j  = 1 
if j overlaps with i 
if no overlap exists between j and i. 

Aij is the minimum pair separation allowed and Bij is the computed 
distance. The larger Ai the more serious the overlap. A summary of the 
properties of the structures and computational efficiency of these three 
methods are summarised in Table 1. From this work it is recommended that 
the expansion algorithm is used to simulate the structure of sintered ceramic 
membranes. Having matched cv between the model and the experimental 
structure the detailed pore structure can be computed, in this case the pores 
are formed by connected pathways formed in the space between touching 
particles - a series of convergent divergent channels. Particle retention 
within the membrane can be simulated by a procedure similar to that 
outlined in section 3.1 for two cases, (i) the case when apart << pore 
minimum cross section diameter. This work has been considered by Rowley 

(7). 
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TABLE 1 Comparison Of The Random Packing Algorithms 

Name DescriD tion Feature & Comment 

Constraint First generate an Stochastic algorithm 
Poisson Point assembly of points then Slow at large 
process model let points to grow into minimum pair 

spheres Indirect control of 
Use a minimum pair 
separation Low co-ordination 

the size distribution 

number 

Expansion Expands spheres in a Analytical algorithm 
algorithm given configuration to Very fast 

maximise size and co- 
ordination number distribution 

Affects size 

Efficient to obtain 
high packing density 

Vibration Elimination overlaps in Analytical algorithm 
model a configuration of a Extremely slow 

given nominal packing 
density distribution 
Need to determine the 
most serious overlap( s) generating the 
at each MC iteration 

Does not affect size 

Capable of 

maximum packing 
density 

Ceramic Foam Membranes 

The underlying structure of the foam can be produced by an extension 
of a Poisson point process in 3 space if it is assumed that the centroids of the 
polyhedral cells of the foam are spacially independent. The extension is 
similar to the construction of a Voronoi tessellation of 2 space from a Poisson 
point process in 2 space. In other words a model for the ceramic foam 
membrane can be viewed as an extension of the basic model of the sintered 
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FIGURE 16 A Section Of A Cellular Ceramic Foam Membrane, Predicted 
By The Model 

membrane and is related, although a higher order, to the 2 dimensional 
model described for a cellular membrane. 

If the cells in a constrained Poisson point process in 3 space are 
allowed to expand and, when adjacent cells touch, growth is continued along 
the plane of contact until the volume space is completed tessellated a set of 
Voronoi polyhedra will be produced. This structure can be used to simulate 
a ceramic or polymeric foam. To do this only the edges of the faces of the 
polyhedra are displayed, Figure 16. These represent the cell connections of 
the membrane. Examples of the resulting structure are shown in Figures 17a 
and 17b diagrams the line thickness of the various edges are allowed to vary. 
This is seen in the real material and is a result both of variation in the 
thickness of the underlying polyurethane base foam and the variation in 
drainage of slurry driving the manufacturing process. The 3 dimensional 
Voronoi tessellation can be analysed to produce statistics on the properties of 
the polyhedra. First the coordination number of any lattice point in the 
graph is 3. This is as experienced in actual membrane materials. If in any 
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FIGURE 17 A Model Of A Foam Membrane Based On A Voronoi 
Tessellation In 3 Space 

polyhedra i the volume is Vi, the number faces Nfi, the number vertices is 
Nvi, the number of edges is Nei then from the computations the expected 
values of these parameters in the network, E ( ) are: 

E(V) = 

E(Nf) = 14.3636 
E(Ne) = 37.0909 
E(Nv) = 24.727 

The comparison between the predictions of the structure of the 
membrane from the model and the actual material is good. The basic 
structure of the graph compared to the actual material is correct. It was 
pointed out earlier that the average dimensions of cells in a foam membrane 
are statistically anisotripic and are Iarger in one direction than the other two 
orthogonal directions. This is due to the expansion of gas bubbles during 
manufacture. This can be readily incorporated into the model by carrying 
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out a linear affne transformation in one plane. This transformation can be 
expressed: 

W:R3 R3 (17) 

When this transformation is included in the model the conditions 
observed in a foam membrane can be modelled with accuracy. The 
transformation will not influence the properties defined in equations 13 and 
16 but will, of course, alter the perimeter of the cells and the area of the faces 
or apertures in  the membrane structure through which the fluids must 
permeate. 

CONCLUSIONS 

Deterministic models cannot be used to represent the properties or structure 
of porous membrane materials. The material structure of these are not 
uniform either in shape, area or volume. Models to simulate the structures 
observed in membrane materials should be based on stochastic geometry. 
This concept has been applied to simulate the structure of three different 
types of ceramic membranes which cover an important range of industrial 
membrane materials. The three structures, although appearing quite 
different, can in fact be described by one generic model based on a 
homogeneous random division of space. The cellular ceramic membrane 
manufactured by electrooxidation of aluminium is essentially a 2 
dimensional structure and can be successfully modelled by a Voronoi 
tesselation of 2 space. The other two types of membrane considered, the 
sintered ceramic membrane and foam membrane, are 3 dimensional 
structures. These can both be modelled by a similar technique if the 
tessellation is taken into 3 space. Variations of these statistical models can 
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be performed to represent asymmetry and to represent measured changes in 
free volume. The models can provide detailed statistical data on the pore 
properties and can be used to compute permeate flow and particle retention. 

NOMENCLATURE 

L = length, M = mass, T = time 

area 
free area 

minimum pore separation distance 
sum of the cross section area of pores 
cross section area of particles of pores 
cross section area of pore i 
cross section area of pore 
computed distance between pores i and j 
in 3 dimensional space 
coordination number of a mode 
diameter of the largest inscribed circle 
of pore i 
mean particle diameter 
particle diameter 
hydraulic diamater of a pore 

expected value of a function 
free area of a membrane at the inlet 
face 
free volume of a membrane 
function 
conditional parameter on pore position 

length of a pore in the direction of 
permeate flow 
intiger number 1 12 

eqn (12) 

L2 

L 
L2 
L2 
L2 
L2 

L 
- 
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number of edge of a pore 
number of faces of a pore 
number of vertices of a pore 
number of sides of a polygon 
pressure drop 
uniformly distributed random number 
0 5 1 5 1  
volume of pore i 
volume 
volume flow of permeate 
Cartesian coordinates 

dimensionless coordinates 
linear dimensions of a membrane in 
direction x, y, z respectively 

x ~ p l , y ~ p l , z ~ p ~  dimensionless position coordinates 

P 

Poit  

Pij 

6 wall thickness 

Sik 

of particle 1 
minimum separation distance by nucleic 
points in 2 dimensional space 
critical minimum separation distance of 
2 nuclei points in 2 dimensional space 
distance between the nuclei of pores i 
and j 

distance between pores i and k in 3 

6 
dimensional space 
constraint distance of nuclei in 3 
dimensional space 
free volume of a membrane 
number density of pores in 2 
dimensional space 

viscosity of permeate 

standard deviation of the diameter of pores 
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