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STATISTICAL MODELS TO DESCRIBE THE STRUCTURE
OF POROUS CERAMIC MEMBRANES

JH.F. Lim, X Jia, R Jafferali and G A Davies
Department of Chemical Engineering
UMIST
Manchester, England, M60 1QD

ABSTRACT

A knowledge of the material structure of porous membranes is
essential in the computation of flux—pressure differential and blinding
behavior. The data provided by manufacturers on the internal pore
properties, mercury porosimetry and air permeability, is of limited use since
it is based for interpretation on an assumed matrix of cylindrical pores.
Ceramic membranes are considered in this work for which three different
types are investigated. None of these show any resemblance to structures
assumed for an interpretation of this data.

The pore structure in all examples vary and it is concluded that
deterministic models to deseribe this are not valid.

Statistical models based on random division of 2 and 3 dimensional
space are proposed to describe the structure of cellular ceramic membranes (2
space model), sintered ceramic membranes and foam membranes (3
dimensional space models). The models are shown to be inter—related
providing a direct comparison between the membrane structures.

The structures proposed by the models are compared and agree well with
experimental data.

INTRODUCTION

In almost all applications of porous membranes it is important to
have quantitative knowledge on the pore properties, particularly the free
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volume, and pore dimensions. Manufacturers often quote data for air
permeability, mercury porosimetry in terms of mercury ingress at various
applied pressures, and bubble point data. In order to obtain information on
the pore diameters from either mercury porosimetry measurements or air
permeability, equations must be applied which invoke some model for the
pore structure. Almost all such models assume that the pores are parallel
cylindrical pores or are interconnected cylindrical pores. If we examine
typical ceramic membranes these assumptions are quite erroneous. The pore
structure bears no resemblance at all to either parallel or interconnected
cylindrical pores. Knowledge of the bubble point at particular pressures is of
little use in determining the pore structure. At best it can give some
information on the diameters of pores at one face of the membrane, the face
at which the bubble points were measured. Even this interpretation requires
an assumption on the cross sectional shape of the pore at the outlet face.
Most models assume that this cross section is circular. In this paper we will
consider three different types of ceramic membranes which are used in micro
and ultra filtration applications. These examples include cellular ceramic
membranes. These are typically used in applications at the boundary
between ultra and micro filtration. The cut—off pore diameter quoted by the
manufactures is between 0.1—4 microns. A second type of ceramic membrane
is a sintered ceramic membrane. These are used mainly in micro filtration
applications. Finally, the third type considered is a cellular foamm membrane
which is principally used in micro filtration applications. These types have
been chosen since the pore structure in each type of membrane is different.
A stochastic model is presented to describe the pore structure in each case.
It is shown that these models are all inter—related and can follow logically
from one another.

EXPERIMENTA] OBSERVATIONS ON THE STRUCTURE OF
CERAMIC MEMBRANES

We will consider the three types of membranes, viz

i) Cellular ceramic membranes,
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ii) Sintered ceramic membranes,
ili)  Cellular foam membranes.

separately. In each case samples of the various membranes were taken and
thin sections made by first impregnating the pore structure with a wax. This
wags used to support the membrane during sectioning. The membrane was
then sectioned carefully using a microtome. Each section was then placed on
a slide, this was heated and the wax removed from the section. The section
was then prepared for scanning electron microscopy and photomicrographs
were then obtained. The magnifications used varied to suit the particular
membrane section being studied.

Cellular Ceramic Membranes

A scanning electron micrograph of a typical cellular membrane is
shown in Figure 1. The dark areas in the photograph are the pores of the
membrane. The actual membrane shown here is an Anotec cellular
membrane which has a nominal pore rating of 0.2 gm. This membrane is
produced by electrolytic oxidation of aluminum. The cellular structure of
the anodic film is the result of local current density at the metal interface.
This is not uniform either in spacial distribution or intensity so that an
irregular cell pattern is formed. The important feature of this membrane,
the type shown here, is that the individual pores whilst irregular in cross
section are non—connected, that is they pass through the membrane in the
direction perpendicular to the plane shown (z direction)
without connecting to any neighbours. Two types are possible, one in which
the pore cross section area is constant in the direction through the
membrane, the second type is where the cross section is smaller at one face
than the other. The first type is a symmetric membrane and the second type
is an asymmetric membrane which is produced by regulating the current
density during the growth of the film. If one studies the SEM photograph
shown in Figure 1, it can be seen that the individual pores have the shape of
an irregular polygon. These fully tessellate the plane shown in the
photograph. Because of the non—connectivity of the pores, the structure can
be described in 2 dimensional space. This is true for symmetric membranes
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FIGURE 1 SEM of an Anotec Cellular Ceramic Membrane. A View of an
Inlet face of the Membrane Perpendicular to the Direction of Flow

and with a slight modification to the description can be applied t-

asymmetric membranes of this type. If we are to describe the structure of
cellular ceramic membranes, then it is important that the details
demonstrated in the photomicrograph are retained in the model. That is
that the sections are irregular external polygons and that they fully tessellate
a plane in 2 space. In early models to describe this structure and models,
which have been used by the manufacturers, the pores are assumed to be
regular hexagons fully tessellating a plane 1,2). This is clearly not true
when one examines the photomicrograph.

Sintered Ceramic Membranes

A typical photomicrograph of a sintered ceramic membrane is shown

in Figure 2. This is much different from the cellular ceramic membrane in
that now the material is made up of an assembly of spheres which are packed
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FIGURE 2 SEM of a Sintered Ceramic Membrane

together in a matrix assembly. There are several points of contact between a
particular sphere and it's neighbours to produce a stable structure. The
sintering process tends to weld adjacent spheres together. The pore space is
formed by the voids between the spheres of the matrix. Unlike the cellular
membrane, the structure must now be described in 3 space. One similarity
between the cellular membrane and the sintered membrane is that symmetric
structures can be produced as well as asymmetric structures. In the
symmetric structure the particle size distribution of the ceramic beads
making up the membrane is constant throughout the material. This leads to
a similar pore space through the material. The word 'similar' is used since of
course there will be variations within the pore space caused by the
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FIGURE 3 Photomicrograph of a Section of a Ceramic Foam Membrane

distribution of particles of the base material. In terms of a statistical
distribution the material is, however, homogeneous. In asymmetric sintered
membranes a different particle size from the base beads are used at one face
of the membrane. Thus the pore space will vary across the membrane in the
z direction. The membrane is now heterogeneous. In both cellular ceramic
and sintered membranes, the object of using asymmetry is to reduce the
cut—off size of the membrane or reduce the average pore cross section area at
one face. Conventionally this face is used as the inlet of the membrane.

Ceramic Foam Membranes Used For Micro Filtration

A typical SEM of a cellular foam membrane is shown in Figure 3.
This media is used in micro filtration particularly for the filtration of fluids
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at high temperatures, an example would be the filtration of molten metals,
such as aluminium and stainless steel, to remove slag. These membranes are
made using a polymeric foam precursor. Usually reticulated polyurethane
foam is used. One method of making these membranes is to compress the
polyurethane foam and then immerse it under a ceramic slurry. The
compression of the foam is then released which causes slurry to penetrate
into the foam structure. The material is then withdrawn from the slurry
bath and excess slurry allowed to drain. The polyurethane foam is thus
coated with a film of ceramic slurry and it is then placed in a furnace where
the ceramic material is sintered. During this process polyurethane foam
material is burned off to leave a matrix of ceramic which mimics the
structure of the original polyurethane foam. In this way a ceramic foam is
produced. Immediately if one examines the photographs one can see that the
material is quite different to either of the other two. One similarity with the
sintered ceramic material is that now the structure is again a three
dimensional structure and must be described in terms as a model of 3 space.
Detailed examinations of ceramic foams usually reveal that the cross section
of the individual cells formed by the inter—connecting ceramic films are
different in one plane to another. In this way they may be described as
asymmetric. This asymmetry is a result of the method of manufacture of the
original base foam material. Reticulated polyurethane foams are usually
made by expansion of a gas bubbling through a liquid polymer solution. This
forms a gas liquid foam and as the gas bubbles rise the reduction in
hydrostatic pressure results in the individual foam cells being bigger in the
vertical plane than in the horizontal. This results in a basic asymmetry
which is then transferred to the ceramic membrane during manufacture.

The examination of these three types of membrane reveal some
important conclusions. First the individual pores cannot be described by any
mode! based on cylindrical structures. The second conclusion is that the
pores are irregular in all cases and cannot therefore be described adequately
by any single linear dimension such as a mean pore diameter. Third, the
irregular shapes are characteristic of each of the three different structures.
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Therefore any models to describe these structures must reflect the basic
irregularity of the pore space and must include the basic properties of each
structure. In the case of the Anotec cellular ceramic membrane, the basic
structure to be reflected in the model must be that the cross section of the
pores have the shape of irregular external polygons. These polygons
tessellate the total area. Models to represent both the sintered membrane
and foam membrane must be described in 3 space. Clearly two different
models must be used for these two membranes. In the case of the sintered
membrane, the model must relate to random packing of spheres (or near
spherical particles) and in the case of the foam membrane, the model must
describe the structure of a basic foam. The foam cells form external irregular
polyhedra and these again fully tessellate 3 space.

STOCHASTIC MODELS TQ DESCRIBE THE STRUCTURE OF THESE
MEMBRANE MATERIALS

Cellular Ceramic Membranes

In order to arrive at a suitable statistical model to describe the
structure of any porous material one musi first consider the physics
underlying the method of manufacture of the materials, this can give
guidelines to a basic physical model to describe the structure. If we consider
the cellular ceramic membrane this, as described earlier, is produced by the
electro—oxidation of aluminium. The basic oxide film which is formed on the
surface of the metal is nucleated at various points on the surface of the
aluminium. The nuclei represent points of high current density and from
these the basic pores are formed. As the oxide film first forms on the surface
the site described is circular. The nuclei sites on the surface are randomly
distributed over the surface and usually result at points where there is
microscopic protrusions on the surface. If it is assumed that the nuclei
centres of the pores are randomly dispersed across the surface and if they are
independent of one another then these centres can be described by a
homogeneous Poisson point process over the surface in 2 space. This basic
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Cell Boundaries

N

FIGURE 4 Pore Growth Along Lines of Contact On A Simulation Of A
Cellular Ceramic Membrane

assumption will be used to develop a pore model to describe the structure.
As the pores grow from the nuclei centres, as a result of oxidation, when
neighbouring pores expand and ultimately touch, it will be assumed that
they then continue to grow along the line of contact. If the oxidation process
is continued so that the pores continue to expand, ultimately all the pores
will be in contact with their nearest neighbours. The growth process then
would cease when the whole surface is oxidised and the resulting cells would
form irregular external polygons. The basic statistical process of tessellating
2 space in this way is known as a Voronoi tessellation (3). An example of the
growth process showing the boundary between adjacent cells is shown in
Figure 4. When an oxide film is formed, the cell boundaries will take the
shape shown in this Figure by the lines of contact between adjacent cells. It
can be seen from this that the network produces a set of external polygons.

In order to translate this basic physical model into a mathematical
algorithm, to simulate the structure of the material, the following sequence is
adopted.

First the simulation area A is defined. This is described in terms of
dimensions x and y and for convenience positions on this surface are
described in terms of dimensionless co—ordinates x!, y! where x! is given by
X/X. By using dimensionless co—ordinates to define any position in the
surface in 2 space the dimensionless parameters x! and y! will take on values:
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0<x1<1 (1)

X and Y are the linear dimensions of the area of membrane simulated.

In order to define the number of cells or pores which will be produced
on the surface, either the free area, Eg, or porosity, Ey, of the membrane
must be specified. Alternately the pore density, that is the number of pores
per unit, must be specified. If the free area or porosity is used then a
calculation is made in order to calculate the pore density. In this discussion
we will assume that the pore density A is defined. The simulation procedure
then follows directly from these definitions. First a set of A x A points are
defined in the simulation area to conform to a Poisson point process. To do
this, if we consider first pore one the position of the centre of this pore x!4,y1
are defined in terms of a uniformly distributed random variabler, 0 <r < 1.
r is defined using a random number generator so that this is first used to
define x! and then a second random number is generated corresponding to y?,
the random number lying in the range of 0 < r < 1. These co—ordinates which
define the centre of pore one are then stored and the process is repeated for
pore two. The co—ordinates x1y, y!s are then stored. This procedure is then
repeated from i = 1 to i = A x A and in each case the two co—ordinates are
stored along with the pore number. This set of 2 x A A points then
represents the nuclei centres of A A polygons of a Voronoi tessellation. In
order to complete the simulation to produce these polygons one of two
procedures may be used. In the first procedure the circles produced from
each nuclei centre are allowed to grow at a uniform rate until they touch one
or more of neighbouring circles propagated from neighbouring nuclei sites.
When two circles touch they are allowed to continue to grow by deformation
along the line equi—distant to the nuclei of the touching disks. The growth
process is continued until the whole surface has been tessellated to produce a
network of polygons. The detailed algorithm to generate this set of polygons
although based on a rather simple idea is involved. An alternative procedure
is to produce the associated Delauney triangulation of the lattice (4,5). The
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FIGURE 5 Voronoi Tessellation Of 2 Space

Delauney triangulation is related to the Voronoi network and is defined as
the network produced by the connection of perpendicular bisectors of sides of
the Voronoi polygons. These perpendicular bisectors when connected
produce a set of triangles which fully tessellate the space. An example of a
Voronoi tessellation is shown in Figure 5. The Delauney triangulation can be
produced from the basic Voronoi nuclei points and then from these the
Voronoi polygons can be traced.

The result of this model is the definition of a network of external
irregular polygons. Mathematically this can be defined in terms of a graph.
An important feature of the graph is the co—ordination number at a node, c,
that is the junction of walls of neighbouring pores, is a constant, ¢ = 3.
Apart from the boundary edges of A the graph will fully tessellate the space.
A resulting computer simulation from this model is shown in Figure 5. The
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FIGURE 6 Pore Order Distribution Produced By Voronoi Lattices

pores are all external irregular polygons with ¢ = 3. The average number of
sides of polygons n = 5.9629 with a standard deviation 6, = 1.3852. If,
however, one compares the network with Figure 1, there are some differences.
In the simulation there are a number of triangular pores. These are not
evident in the SEM of real membranes. The distribution shown in Figure 6
shows that in the Voronoi lattice produced there are some 2% of the polygons
with an order, number of sides, of 3. The expected pore area E(ap) is:

E(ap) = % 2)

The mean pore order E(n) is given by:

E(n) = % 3)
c-2
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FIGURE 7 Pore Shape Distribution In A Constrained Voronoi Tessellation
of 2 Space

Since the Voronoi tessellation ¢ = 3, E(n) = 6. This compares with
the value reported above of 5.9629.

The differences in the model structure shown in Figures 5 and 1 can
be addressed by introducing constraints to the positioning of the nuclei
defining the lattice points, x!; and y!. If we introduce a minimum
separation distance allowable between neighbouring lattice points, 8, such
that for nucleus i:

>
Bi2d (i - 52 + (s — )2 )
forj=1..i—-1,i+1..N
This will modify the lattice. The effect of this on the pore order

distribution, plotted here in terms of the second moment, is shown in Figure
7. The second moment, 6,, decreases as
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FIGURE 8 A Contrained Voronoi Tessellation Of 2 Space To Simulate A
Cellular Ceramic Membrane

§ increases. A value of f is reached where the fraction of order 3 pores
(triangular pores), F(n=3) becomes zero. This value for § was used in
defining the constraint limit. The network produced at this limit on g3, § =
Bcrit, was analysed, in terms of the pore order distribution the first and
second moment were calculated. The first moment remains unchanged at
E(n) = 5.9629, the second moment decreases to 6, = 0.8042. The graph
produced of the lattice is shown in Figure 8. SEM photomicrographs of the
type shown in Figure 1 were analysed on a digitising image analyser.

The experimental data for pore order are shown in Figure 9. It can be
seen from this that there is close agreement between the constrained Voronoi
lattice and the experimental results.
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FIGURE 9 A Comparison Between The Pore Order Distribution Produced
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In both Figures 5 and 8 the wall of the pores are simply shown as thin
lines. This is, of course, not the case in practice when §, the wall thickness,
is finite and in relation to the diameter of the inscribed circle of a polygon
(pore) significant. The area in a unit section of membrane occupied by the
pore walls, Aw, is:

Ayj=— —Rore—j_A (5)

where A pore is the total cross section of the pores within the area A. In a
unit area of A:

A
Ap= ):l: api (6)

where api is the cross section area of pore i, A_ is the free area of the
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FIGURE 10 A Comparison Of The Structure Of A CCM Membrane

Predicted By The Model, a, with experiment, b

membrane. To present a direct comparison between the simulation and real

membranes, measurements were made with the image analyser to determine

AE from Figure 1. For a 0.2 ym nominal pore rating Anotec membrane AE N

0.591.

This was used to determine & and the value inserted into the

simulation. Thus the simulation model has used two pieces of data taken
from measurements of an actual membrane; A and §. Using these values the

structure simulated by this 2 dimensional stochastic model for a C.C.M.

membrane is shown in Figure 10. There are some minor differences. At the

node points the model produces as a clearly defined angle whereas in
practice, because of surface tension forces acting within the electrolyte in the

pore during formation, a curved boundary is produced. This can easily be

included in the model.

Additionally the manufacturing process sometimes
results in very brittle walls between adjacent pores.

These sometimes

rupture during separation and handling to produce a conjugate concave
polygon (pore). Some examples are seen in Figure 10b. Comparisons of 10a
and 10b produce identical values for ¢, c=3 and very close values for E(n):

E(n) =

SIM

59629,  E(n)

= 5.957. The
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frequency distributions for other pore properties; pore area F(ap), pore
perimeter F(p) and pore hydraulic diameters F(d, ) are shown in Figures
P

1la—c.

The comparisons of results predicted by the model with measurements
from an actual membrane structure are favourable. The sequel to this is can
the model be used to predict any performance data of a membrane in use and
how do the predictions then compare with experimental data? Two simple
cases have been considered. The first is the prediction of clean solvent flux
with the applied trans—membrane pressure differential, V vs AP. This,
although very important in practice, is perhaps not such a sensitive test of
the model since if the free area AE is matched, AP is a function of the pore

perimeter, p, but will not change dramatically with p.

For laminar flow through the membrane the volume flux is given by
the equation:

A
X ajdy?
AP i=1 !
V= : (7)
(32 ut Ay )AJ
al
i=1

where {is the thickness of the membrane. This equation is applicable only to
symmetric membranes in which the pore cross section is constant with £.

Since F(dn) is known and a; d, then equation 7 can be solved. The
1

H
simulation term, ST, is available from the model, AE and ¢ is also known so

that:
V=45 (%f) (33,) (8)

if %—T— is computed = K, the volume flux can be calculated and if this is
E
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plotted against AP a straight line should be obtained passing through (0, 0)
Kn )

32l

with a slope of {

Data is shown in Figure 12 for water flux and a 0.2 pym Anotec
membrane.

A more sensitive test would be to predict the flux decay with time at
a constant trans—membrane pressure as the membrane blinds. The
mechanism of blinding in complex and depends on the nature of the material
present in the permeate fluid. We will consider an ideal case used by
manufacturers when determining and quoting so called 'cut—off' pore size.
Here the membrane is challenged with a slurry of carefully sized latex
particles dispersed in a solvent. Experiments were carried out in the present
work with dilute suspension of latex beads in water. The latex size fraction
was chosen so that particles would be close to the pore dimensions. Then if
dpart < dci, where d¢; is the largest inscribed circle of a pore, i, the particle
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will pass through the pore with the permeate to be entrained. The criteria
for defining particle—pore interactions used in the simulation were taken from
the work of Rose and English {6). Thus, if dpars > d¢i then the particle
would remain either on the inlet surface and then form a layer (case i), or if
1.1xd¢i > dpart > dci then the particle would enter the mouth and become
wedged, case ii. In each case the effect will be similar, the subsequent flow
through pore i would either cease (i) or be greatly reduced (ii).
Measurements were made of permeate flux while filtering in dead—end mode
a 5% latex suspension of 0.225 um beads in water. A 0.2 um Anotec
membrane was used at AP = 0.34B. In order to compare the flux decline
using the stochastic model for the structure of the membrane, the clear water
flux was first computed using equation 7. The interaction of particles in the
slurry with the membrane pores was then computed using a stochastic
trajectory model. First a distribution function is defined to describe the
particle size in the siurry. A normal distribution was used with a mean of
0.225 pm and standard deviation of 0.031 pm. The slurry was assumed to be
homogeneous so that there is equal probability for particles in the slurry to
approach the filter at any point over the inlet area. Plug flow towards the
filter surface was assumed. To compute the particle—pore interaction a
particle is selected at random from the distribution, say particle 1. The
diameter is determined using the central limit theorem:

where 1 is a uniformly distributed random variable 0 < r <1 and M is an
integer M > 12.

The trajectory approach of this particle towards the membrane is next
defined by selecting its position in 2 space x!p(, ylp1. These values are again
determined in terms of r, 0 <r < 1, xlp;, ylp; define the position on the
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membrane surface where the particle arrives. The membrane model is then
interrogated to determine the dimensions of the pore nearest to x1ps, ylp1, say
pore i, diameter dc;. Initially all pores are open and thus the interaction of
the particle with the pore is determined by comparing dpy with d¢;. If
dp1 < d¢j the particle is allowed to pass through the pore with the permeate
and no increase in the hydraulic resistance of the membrane takes place. If
dp1 2 1.1d¢; then the particle is retained on the surface of the membrane and
blocks the pore to further flow. The total free area of the membrane is then
reduced and therefore in equation 7 the term is reduced giving a reduction in
the flux. The intermediate condition d¢j < dp < 1.1d¢; which leads to
particles being trapped in the mouth of a pore, i, is also considered. This
again reduces the flux by, in this case partially sealing the pore. The
reduction in area of the pore is computed and the term (ST) in equation 7
(ST) is adjusted. The process is repeated choosing another particle dpy and
co—ordinates xlpy, ylp2. The interaction is computed with the pore at or
nearest x!pa, ylpz as before and the cutcome v.v the flux determined. The
procedure is repeated for n particles n ~ 105, As the membrane starts to foul
pores at any position x'pp, ylpn will be blocked. When this condition is met
particle arriving at this point are processed by considering the conditions of
neighbouring pores to this site. If any or all of these are vacant — open —
then the particle is allowed to migrate to the pore of largest cross section
area offering the path of least resistance to flow. The pore—particle
interaction is then computed. If all neighbouring sites are blocked then
particles are assumed to form a surface layer on the membrane. In the
present work the resistance of this surface layer is ignored with respect to the
resistance across the membrane. This is a simplification which would only be
valid if the surface deposit is small.

Results for the computations are shown in Figure 13. For conditions
when the particle size distribution is quantitatively similar to the pore size
distribution the computed data is close to experimental results. The model
provides data on the quantity and size distribution of particles entrained
through the membrane in the permeate as well as data on the surface deposit
and particles blinding the pores. The latter would not be removed by any
back flushing procedures.
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FIGURE 13 Comparison For The Flux Decay With Time At A Constant
Transmembrane Pressure Differential, Model Predictions With Experimental
Results

Sintered Ceramic Membranes

A major difference between sintered ceramic membranes, ceramic
foam membranes and the cellular membranes described in section 3.1 is that
these structures can only be described by 3 dimensional models. There is no
symmetry or structural similarity in the third plane as in the cellular
configuration. SEM photographs show the structure of sintered membranes
to be formed from an array of near spherical particles which are fused
together at the points of contact. The particles are polydispersed. The basic
problem to model is a configuration of nested polydispersed spheres.
Although the structure of the cellular membrane described by a pseudo 2
dimensional structure appears at first to have little or no similarity to this
problem, there is in fact a considerable common base for both.
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If we assume that the relative positions of particles in the basic
structure are statistically independent, then one approach is to assume that
the centres of the spheres making up the structure are distributed in 3 space
by a Poisson point process. As in the previous example the particles can be
constructed from these points by a uniform growth process until each particle
touches a neighbouring particle, the essence of a Voronoi tessellation in 3
space. The number density of the points distributed in 3 space will then
define the average particle diameter. In this simple description the particle
size distribution and free volume of the resulting structure will be determined
by the site number density and spacial distribution.

To develop a model based on these assumptions, the number density
per unit volume, Ay, is first defined. The sample space, X, Y, Z, is then
made non—dimensional by defining the parameters x! = X/X, yl= y/Y, zl =
Z/ Z. Starting with the position of the first particle the position of the centre
are defined in 3 space by determining x4, y%, z!; from a uniformly
distributed random variable r, 0 < r < 1 as before. The sequence is then
repeated for each particle 1 through N = A, in each case the co—ordinates of
the centres of each particle i, x1j, y!i, z!j, are stored. To complete the
construction the particles are allowed to grow radially at a constant rate
from the nuclei sites (centres) until each particle contacts a neighbouring
particle. At this point the growth at the two contacting particles are
stopped and the corresponding diameters determined and stored. On
completion of this process all particle diameters and positions are known.
The free volume of this structure, ¢, can then be computed from

N
V-2% 1(113
ev = izt 6 10
v . (10)

where V is the sample volume V = X Y Z. When the position of the initial
nuclei sites, x!j, yli, z!j, are uncontrained within the sample space the free
volume obtained is high ¢,70.8 and generally much higher than that obtained
in commercial samples of sintered ceramic membranes. The results also
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demonstrate a wide variation in particle diameters and resulting high
standard deviation. To modify the structure and to bring it closer to that of
actual membrane materials, a constraint or limit process is applied to the
initial Poisson point distribution in 3 space. (The procedure is very similar
to that applied earlier in the tessellations of 2 space.) The basic
requirements are the same — to reduce the variance, in this case the volume,
of the unit cells constructed from the Poisson points.) The technique is to
generate the N points but as these are defined the distances of all
surrounding points are computed and compared to a minimum set value —
constraint distance 8. For point i all surrounding nearest neighbour points
say k, 1, m, n are determined and the distances -k, i—1, etc computed:

=Y (xi=xK)? + (yiyK)? + (zi—2x)? (1)

dik is then computed to 6. If 835 > & then the distance ;) is computed and so
on. If all values exceed the value of § then condition for point i is accepted.
If any one or more distances 8;x < § then the point i is invalid and replaced.
As & is adjusted the free volume of the final structure ¢y is modified. A
summary of results produced based on a simulation of a membrane sample
made up of 8000 spheres are shown in Figure 14. As the constraint distance
§ is increased e, decreases and d increases. The simulated structure of the
membrane produced by the model are shown in Figures 15a and b. Figure
15a shows a close up of the structure seen normally to a face of the
membrane. In Figure 15b a sample volume is rotated to show the 3
dimensional packing structure.

The constraint Poisson point process model introduces a minimum
pair separation to the normal unconstrained process to control the mean size
and size distribution of the individual spheres making up the structure,
obviously the greater the value of § the larger the mean size and the smaller
the range of the distribution. However, as the points are introduced
randomly, as & is increased the computer time spent in generating a given
number of points within a simulation volume increases. There is an upper
limit for packing of hard spheres using this minimum pore separation
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FIGURE 14 Variation Of Free Volume With Interparticle Spacing

concept. Alternative procedures can be adopted all based on the same
concept of utilising a Poisson point process in 3 space to define the positions
of hard spheres but applying different rearrangement algorithms to control
¢v. Two other methods have been employed in the present work; (i) an
expansion model and (ii) a vibration model. In the expansion model the
algorithm expands and/or moves adjacent spheres according to a set of
deterministic values rather than randomly. The idea is to achieve a more
stable highly packed structure. According to the expansion model if a sphere
is in contact with another sphere it will expand itself along the line of centres
until it contacts a second sphere. If it is already in contact with two spheres
it will grow until it touches a third sphere whilst maintaining contact with
the other two. Further growth is possible from this position, if it is in
contact with three spheres but its centre is not on the plane defined by the
centres of the three contact spheres it can expand again until it contacts a
fourth sphere. It can expand again if it has four contact spheres but the
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FIGURE 15 A Section Of A Sintered Ceramic Membrane Predicted By The
Model
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centre is outside the tetrahedron formed by the centres of the four spheres
growth can continue until it contacts a fifth sphere, etc. This series of
modifications can be implemented in a fast efficient algorithm to obtain high
packing densities and low free volumes ¢,. The modification rules necessarily
affect the size distribution of the resulting spheres.

In the vibration algorithm the procedure is effectively reversed. First
the size of the spheres is predefined according to some distribution function,
such as for example equation 9, and the position of the individual spheres are
generated randomly. This procedure will inevitably contain a large number
of overlaps. The vibration algorithm, effectively eliminates the overlaps
according to a set sequence. To minimise the chance of introducing new
overlaps as ones are removed the procedure starts with the most serious
overlap. The order of overlap is chosen using the term A;.

Aj = Xlij (Ajj2 - Byj?) (12)
,j=1,2,3,..N

where lijj=10 if j overlaps with i
Lij=1 if no overlap exists between j and i.

Aj;j is the minimum pair separation allowed and Bjj is the computed
distance. The larger A;j the more serious the overlap. A summary of the
properties of the structures and computational efficiency of these three
methods are summarised in Table 1. From this work it is recommended that
the expansion algorithm is used to simulate the structure of sintered ceramic
membranes. Having matched ¢, between the model and the experimental
structure the detailed pore structure can be computed, in this case the pores
are formed by connected pathways formed in the space between touching
particles — a series of convergent divergent channels. Particle retention
within the membrane can be simulated by a procedure similar to that
outlined in section 3.1 for two cases, (i) the case when dpary << pore
minimum cross section diameter. This work has been considered by Rowley

(7).
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TABLE 1 Comparison Of The Random Packing Algorithms

Name Description Feature & Comment

Constraint First generate an Stochastic algorithm

Poisson Point,
process model

assembly of points then
let points to grow into
spheres

Use a minimum pair
separation

Slow at large
minimum pair
Indirect control of
the size distribution
Low co—ordination
number

Expansion
algorithm

Expands spheres in a
given configuration to
maximise size and co—
ordination number

Analytical algorithm
Very fast

Affects size
distribution
Efficient to obtain
high packing density

Vibration
model

Elimination overlaps in
a configuration of a
given nominal packing
density

Need to determine the
most serious overlap(s)
at each MC iteration

Analytical algorithm
Extremely slow

Does not affect size
distribution

Capable of
generating the
maximum packing
density

Ceramic Foam Membranes

The underlying structure of the foam can be produced by an extension

of a Poisson point process in 3 space if it is assumed that the centroids of the
polyhedral cells of the foam are spacially independent. The extension is

similar to the construction of a Voronoi tessellation of 2 space from a Poisson

point process in 2 space.

In other words a model for the ceramic foam

membrane can be viewed as an extension of the basic model of the sintered
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FIGURE 16 A Section Of A Cellular Ceramic Foam Membrane, Predicted
By The Model

membrane and is related, although a higher order, to the 2 dimensional
model described for a cellular membrane.

If the cells in a constrained Poisson point process in 3 space are
allowed to expand and, when adjacent cells touch, growth is continued along
the plane of contact until the volume space is completed tessellated a set of
Voronoi polyhedra will be produced. This structure can be used to simulate
a ceramic or polymeric foam. To do this only the edges of the faces of the

polyhedra are displayed, Figure 16. These represent the cell connections of
the membrane. Examples of the resulting structure are shown in Figures 17a

and 17b diagrams the line thickness of the various edges are allowed to vary.
This is seen in the real material and is a result both of variation in the
thickness of the underlying polyurethane base foam and the variation in
drainage of slurry driving the manufacturing process. The 3 dimensional
Voronoi tessellation can be analysed to produce statistics on the properties of
the polyhedra. First the co—ordination number of any lattice point in the
graph is 3. This is as experienced in actual membrane materials. If in any
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FIGURE 17 A Model Of A Foam Membrane Based On A Voronoi
Tessellation In 3 Space

polyhedra i the volume is Vj, the number faces Nfj, the number vertices is
Nv;, the number of edges is Ne; then from the computations the expected
values of these parameters in the network, E ( ) are:

E(V) = % (13)
E(Nf) = 14.3636 (14)
E(Ne) = 37.0909 (15)
E(Nv) = 24.727 (16)

The comparison between the predictions of the structure of the
membrane from the model and the actual material is good. The basic
structure of the graph compared to the actual material is correct. It was
pointed out earlier that the average dimensions of cells in a foam membrane
are statistically anisotripic and are larger in one direction than the other two
orthogonal directions. This is due to the expansion of gas bubbles during
manufacture. This can be readily incorporated into the model by carrying
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out a linear affine transformation in one plane. This transformation can be

expressed:
W:R3 — R3 (17)
x! 100 X
ytf = (010 y (18)
z! 00a z

When this transformation is included in the model the conditions
observed in a foam membrane can be modelled with accuracy. The
transformation will not influence the properties defined in equations 13 and
16 but will, of course, alter the perimeter of the cells and the area of the faces
or apertures in the membrane structure through which the fluids must
permeate.

CONCLUSIONS

Deterministic models cannot be used to represent the properties or structure
of porous membrane materials. The material structure of these are not
uniform either in shape, area or volume. Models to simulate the structures
observed in membrane materials should be based on stochastic geometry.
This concept has been applied to simulate the structure of three different
types of ceramic membranes which cover an important range of industrial
membrane materials. The three structures, although appearing quite
different, can in fact be described by one generic model based on a
homogeneous random division of space. The cellular ceramic membrane
manufactured by electro—oxidation of aluminium is essentially a 2
dimensional structure and can be successfully modelled by a Voronoi
tessellation of 2 space. The other two types of membrane considered, the
sintered ceramic membrane and foam membrane, are 3 dimensional
structures. These can both be modelled by a similar technique if the
tessellation is taken into 3 space. Variations of these statistical models can
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be performed to represent asymmetry and to represent measured changes in
free volume. The models can provide detailed statistical data on the pore
properties and can be used to compute permeate flow and particle retention.

NOMENCLATURE

L = length, M = mass, T = time

A area L2
AE free area —
Ay minimum pore separation distance L
Ap sum of the cross section area of pores L2
Ay cross section area of particles of pores L2
aj cross section area of pore i L2
ap cross section area of pore L2
Byj computed distance between pores i and j

in 3 dimensional space L
c coordination number of a mode -
dci diameter of the largest inscribed circle

of pore i L
dpart mean particle diameter L
dpart particle diameter L
dH hydraulic diamater of a pore L
E() expected value of a function -
En free area of a membrane at the inlet

face -
E, free volume of a membrane —
F() function -
L5 conditional parameter on pore position

eqn (12) —
14 length of a pore in the direction of

permeate flow L

M intiger number > 12 —
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Nei
Nij
Nr;
n
AP
T

vi
\'

\"

X,y,Z
Xl,yl,zl

X,Y,Z

number of edge of a pore
number of faces of a pore
number of vertices of a pore
number of sides of a polygon
pressure drop

uniformly distributed random number
0<1<l

volume of pore i

volume

volume flow of permeate
Cartesian coordinates

dimensionless coordinates

linear dimensions of a membrane in
direction x, y, z respectively

x!p1,¥lp1,21p1  dimensionless position coordinates

s
ﬂoit

B3

ik

€y

Av
ML-1T1

Op

of particle 1

minimum separation distance by nucleic
points in 2 dimensional space

critical minimum separation distance of
2 nuclei points in 2 dimensional space
distance between the nuclei of pores i
and j

wall thickness

distance between pores i and k in 3
dimensional space

constraint distance of nuclei in 3
dimensional space

free volume of a membrane

number density of pores in 2
dimensional space

viscosity of permeate

standard deviation of the diameter of pores

853

ML~

L3
L3
L3 T

liquid
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